Wahrscheinlichkeiten

 

Wie stehen meine Chancen?

Am Ende unserer Pokerleitfandens zu Texas Hold’em Poker schauen wir uns noch einmal schnell die statistische Gewinnwahrscheinlichkeit für unterschiedliche Pokerhände an. Es geht hier um die essentiellsten statistichen Berechnungen der Wahrscheinlichkeiten. Es macht auf jedem Fall Sinn, sich mit ihnen zu beschäftigen.

Um die Gewinnchancen zu kalkulieren, muss man die Anzahl der “outs” (Karten, die Deine Poker -Hand aufwerten) wissen. Man spielt  TEXAS HOLD’EM Poker mit einem Kartensatz von 52 Karten. Nach der Ausgabe der Karten, sindimmer noch 50 weitere Dir unbekannte Karten. Nach dem Flop kommt man herunter auf 47 Karten und nach dem Turn auf 46. In der nachstehenden Tabelle findest Du die Wahrscheinlichkeiten, die von Dir erhofften Blätter zu erhalten.?

 

Outs

On The Turn (%)

On The River

(%)

1

2,13

2,17

2

4,26

4,35

3

6,38

6,52

4

8,51

8,7

5

10,64

10,87

6

12,77

13,04

7

14,89

15,22

8

17,02

17,39

9

19,15

19,57

10

21,28

21,74

 

 

Schau Dir die obige Tabelle, so gründlich wie möglich an. Hast Du gemerkt, dass die Wahrscheinlichkeiten nahe einem vielfachen von zwei sich befinden? Das erleichtert Dir auf einer schnellen Art und Weise die Wahrscheinlichkeit abzuschätzen, eine gewünschte Karte zu bekommen.

 

Wie man die Wahrscheinlichkeiten im Poker errechnet.

 

Angenommen, Du hast ein Paar Damen auf der Hand – ganz gut. Der Flop liefert keine anderen Damen. Was ist nun die Chance, noch eine Dame zu kriegen?

 

Lektion 1:  Welche Aussichten bestehen beim “Turn“ auf eine Dame?

5 Karten kennst Du, demnach bleiben 47 unbekannte übrig. Zwei Damen gibt es noch im Kartenstapel. Die Wahrscheinlichkeit, eine davon zu kriegen ergibt daher 2/47, das macht 0,0426 – daher etwa 4,3%.

Lektion 2: Du hast keine Dame beim „Turn“gekriegt – welche Aussichten hast Du auf Damen „On the river”?

Es gibt augenblicklich immer noch 2 Damen im Poker – Spiel. Du kennst jetzt 6 Karten daher 46 unbekannte bleiben noch übrig. Also ist die Wahrscheinlichkeit nun 2/46, das macht 0,0434 – also etwa 4,3%. Die Aussicht auf eine Dame hat sich evident nicht bemerkenswert verbessert!

 

Lektion 3: “Ich will beide Damen!

Welche Wahrscheinlichkeit besteht, das zu realisieren? Um hierauf eine Antwort zu geben, musst Du die ermittelte Wahrscheinlichkeit für jede Karte miteinander multiplizieren. Die Chance auf eine Dame beim “Turn” ist 0,0426. Die Wahrscheinlichkeit einen „on the river” zu bekommen beträgt 1/46, weil ja jetzt
blos nur noch eine Dame im Poker – Spiel ist. Das sind 0,0217 oder ungefähr 2,2%. Wir multiplizieren: 0,0426 x 0,0217 und erhalten in etwa 0,0009 bzw. 0,09%. Anders ausgedruckt: Du erhältst die letzte Dame höchstwahrscheinlich nicht – Wieso also Geld riskieren?

Lektion 4: Welche Aussichten bestehen zu Beginn des Poker – Spiels ein Paar Damen zu bekommen?

Du bekommst erst eine Karte: die Dame und danach noch eine weitere – welche Aussicht gibt es dafür, dass die beiden Karten denidentischen Wert aufzeigen? Es befinden sich drei Damen im Poker – Spiel und 51 Karten gibt es sonst im Poker – Spiel. Wir berechnen also eine Chance von 3/51 bzw. 0,059 (5,9%), eine davon ergattern zu können.
Wie hoch ist die Aussicht, dass es sich dabei um eine Dame handelt? Das Packet hat 13 diverse Karten. Wir errechnen: 0,059/13, demnach 0,0045 daher etwa 0,5%.

Lektion 5: Wie stehen für Dich die Chancen, eine Dame beim Flop zu bekommen?

Lass uns an dieser Stelle mal rückwärts denken. Finde anfangs heraus, welche Wahrscheinlichkeit dafür besteht, keine Dame zu bekommen. Für die erste Karte liegt diese Aussicht bei 48/50 (48 Karten sind keine Damen und 50 andere Karten sind noch übrig). Die zweite Karte liegt bei 47/49 und die dritte bei 46/48. Miteinander multipliziert kriegen wir 0,882 oder eine 88,2%ige Chance, keine Dame im Flop zu erhalten. Die Chance, eine Dame im Flop zu erhalten, ergibt also 1-0,882 = 0,118 also 11,8%.

Nach unserem Poker -Kurs  solltest Du schon relativ gründlich für Deine erste Runde bei Texas Hold’em Poker vorbereitet sein. Vergiss jedoch nicht, dass Erfahrung wenigstens genau so wichtig ist, wie die Werkzeuge, die wir Dir mit unserem Guide an die Hand gegeben haben.